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Abstract
We consider the problem of finite sample corrections for entropy estimation.
New estimates of the Shannon entropy are proposed and their systematic error
(the bias) is computed analytically. We find that our results cover correction
formulae of current entropy estimates recently discussed in the literature. The
trade-off between bias reduction and the increase of the corresponding statistical
error is analysed.

PACS numbers: 89.70.+c, 02.50.Fz, 05.45.Tp

Statistical fluctuations of small samples induce both statistical and systematic deviations of
entropy estimates. In the naive (‘likelihood’) estimator one replaces the discrete probabilities
pi , for i = 1, . . . , M , in the Shannon entropy [1]

H = −
M∑
i=1

pi ln pi (1)

by maximum likelihood estimates p̂i . More precisely, we consider samples of N observations,
and let ni be the frequency of realization i in the ensemble. Then, with the choice p̂i = ni

N
,

the naive estimate

Ĥ = −
M∑
i=1

p̂i ln p̂i (2)

leads to a systematic underestimation of the entropy H.
There is a series of publications trying to improve the estimation error successively

with suitable terms of corrections. One approach is to apply a Taylor expansion around the
probability pi to the ln-function in (2) [2–4]. A detailed computation of the expectation value
of Ĥ with respect to the multinomial distribution

ρ(n1, . . . , nM;p1, . . . , pM,N) = N !
M∏
i=1

p
ni

i

ni

(3)
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up to the second order in N was given by Harris [3] and gives

E[Ĥ ] = H − M − 1

2N
+

1

12N2

(
1 −

M∑
i=1

1

pi

)
+ O(N−3). (4)

The O(1/N) correction term was first obtained by Miller [2]. The term of order 1/N2 involves
the unknown probabilities pi , and cannot be generally estimated reliably. In particular, it would
not be sufficient to replace them by p̂i in this term.

In order to extend the estimation beyond corrections of order 1/N , Paninski [5] applies
Bernstein approximating polynomials, which are defined as a linear combination of binomial
polynomials. It can be shown, using results from approximation theory, that there exist
expansion coefficients such that the maximum (over all pi) systematic deviations are of the
order 1/N2. This is better than the order 1/N rate offered by the correction terms mentioned
above. Unfortunately, the good approximation properties of this estimator are a result of
a delicate balancing of large, oscillating coefficients, and the variance of the corresponding
estimator turns out to be very large [5]. Thus, to find a good estimator, one has to minimize
bounds on bias and variance simultaneously. The result is a regularized least-squares problem,
whose closed-form solution is well known. However, one can only hope that the solution of
the regularized problem implies a good polynomial approximation of the entropy function.
The latter also depends on whether the experimenter is more interested in reducing bias than
variance, or vice versa.

An alternative approach, where only observables appear in the correction term, was
proposed by Grassberger [6]. There it was assumed that all pi � 1, so that each ni is a
random variable which should follow a Poisson distribution. To start with, we consider Renyi
entropies of order q � 0

H(q) = 1

1 − q
ln

M∑
i=1

p
q

i . (5)

The Shannon case results from taking the limit q → 1, i.e. H = limq→1 H(q). For the
estimation of H(q) it seems obvious first to ask for an unbiased estimator of any term p

q

i of
the sum in (5). In the case of integer values of q �= 1, the situation is trivial because the unique
unbiased estimator p̂q is1

p̂q = 1

Nq

n!

(n − q)!
n � q (6)

with p̂q := 0 for n < q. However, to achieve q → 1, it is necessary to look first for a
generalization for arbitrary q. As shown in [6], the analytical continuation of the estimator is
non-trivial since a naive replacement of the factorials in (6) by �-functions is biased. Indeed,
unbiased estimators of pq do not exist for non-integer values of q. Nevertheless, in [6] an
interesting estimator of pq was proposed which is at least asymptotically unbiased for large N,
and is also a ‘good’ approximation in the case of small samples. The corresponding estimator
of the Shannon entropy is2 [6]

Ĥψ =
M∑
i=1

ni

N

(
ln N − ψ(ni) − (−1)ni

ni(ni + 1)

)
. (7)

For the interesting case of small probabilities pi � 1 the estimate (7) is less biased than the
estimator obtained by the Miller correction.

1 For simplification the index i will be omitted.
2 The summation is defined for all ni > 0. The digamma function ψ(n) is the logarithmic derivative of the �-function
(see e.g. [8]).
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A further improvement, related to the latter approach, which is also based on the
assumption of Poisson-distributed frequencies, was recently proposed by Grassberger [7].
The corresponding entropy estimator of the Shannon entropy is

ĤG =
M∑
i=1

ni

N

(
ψ(N) − ψ(ni) − (−1)ni

∫ 1

0

tni−1

1 + t
dt

)
. (8)

The correction term of the earlier estimator Ĥψ is recovered by a series expansion of the
integrand in (8) up to the second order. The higher order terms of the integrand lead to
successive bias reductions compared to (7).

At this point, one might ask whether further improvements in bias reduction are possible.
Moreover, it is of special interest to consider the trade-off between bias reduction and the
increase of the corresponding statistical error. In the following theorem, we propose a family
of new entropy estimators and determine their systematical error analytically. We will present
a detailed analysis of the bias and show that the entropy estimators above are specific examples
of our general results.

In view of the following computations we note that the Shannon entropy is a sum of terms,
h(pi) = −pi ln pi , which exclusively depend on the class i, for i = 1, . . . ,M . Therefore,
when we consider expectation values with respect to ni , the computations can be carried out
by replacing the joint distribution (3) by the binomial distribution

P(ni;pi,N) =
(

N

ni

)
p

ni

i (1 − pi)
N−ni (9)

for 0 � ni � N and E[ni] = piN . Now let us consider the following:

Theorem. Let ξ > 0 be a real number and

ĥ(ξ, n) = n

N

(
ψ(N) − ψ(n) − (−1)n

∫ 1/ξ−1

0

tn−1

1 + t
dt

)
(10)

be a parametric family of estimators of the function h(p) = −p ln p. For the particular case
n = 0, let ĥ(ξ, 0) = 0. Then, we have the identity

E[ĥ(ξ, n)] = −p ln p + b(ξ, p) (11)

and

b(ξ, p) = −p

∫ 1−p/ξ

0

tN−1

1 − t
dt (12)

is the bias of the estimator ĥ(ξ, n).

From the theorem we directly obtain an estimator of the Shannon entropy by summation of
(10), i.e. Ĥ S(ξ) = ∑M

i=1 ĥ(ξ, ni). Using a similar notation as in [7] we receive the following
expression:

Ĥ S(ξ) = ψ(N) − 1

N

M∑
i=1

niSni
(ξ) (13)

with

Sn(ξ) = ψ(n) + (−1)n
∫ 1/ξ−1

0

tn−1

1 + t
dt. (14)
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Proof. For real q � 0 we consider the finite Taylor series approximation of pq around ξ > 0,
i.e.

TN(p) =
N∑

ν=0

(
q

ν

)
ξq−ν(p − ξ)ν (15)

with (
q

ν

)
=

ν∏
i=1

q − i + 1

i
. (16)

We expand the brackets on the right-hand side of (15) and rearrange the terms in order to
obtain the following double summation:

TN(p) =
N∑

n=0

(−1)npnξq−n

N∑
ν=n

(
q

ν

) (
ν

n

)
(−1)ν. (17)

For simplification we introduce the substitution

F(ξ, q, k,N) = (−1)kξq−k

N∑
ν=k

(
q

ν

) (
ν

k

)
(−1)ν. (18)

Then, by further algebraic manipulations we obtain the identity

TN(p)

(1 − p)N
=

N∑
n=0

�n

n∑
k=0

(
N − k

n − k

)
F(ξ, q, k,N) (19)

with � = p/(1 − p). The rhs of the latter expression is a polynomial in � whose (N + 1)

coefficients are all independent of the probability p. On the other hand, there is an unbiased
estimator, say δ̂q (ξ, n), of the expansion TN(p), since the expectation value of δ̂q (ξ, n) can
also be expressed by a polynomial of finite order in �, i.e.

E[δ̂q (ξ, n)]

(1 − p)N
=

N∑
n=0

(
N

n

)
δ̂q (ξ, n)�n. (20)

To obtain the explicit expression of δ̂q (ξ, n), we consider the necessary/sufficient condition
for unbiasedness

E[δ̂q (ξ, n)] = TN(p). (21)

After inserting (19) and (20) into to the condition (21) and then comparing coefficients, it
follows

δ̂q (ξ, n) =
(

N

n

)−1 n∑
k=0

F(ξ, q, k,N)

(
N − k

n − k

)
. (22)

This unbiased estimator of TN(p) is unique because the identity (21) is satisfied for arbitrary
�. Next we carry out the derivation of δ̂q (ξ, n) with respect to q, and consider the limes
q → 1. For this purpose we note that the derivative of the binomial coefficient (16) is

d

dq

(
q

ν

)∣∣∣∣
q=1

=
{
(−1)ν 1

ν(ν−1)
ν � 2

ν ν = 0, 1.
(23)

By direct computation it follows, that the negative derivative of the estimator δ̂q , for q → 1,
is given by the expression

− lim
q→1

dδ̂q

dq
= n

N
(ψ(N) − ψ(n)) +

ξ

N

(
1 − 1

ξ

)n

− n

N
(−1)n

∫ 1/ξ−1

0

tn−1

1 + t
dt. (24)
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Figure 1. Systematic error of ĥ(ξ, n) for samples of N = 6 observations and p = 0.07. Several

special cases of ξ are shown. The case ξ = e− 1
2 slightly improves the estimator Ĥψ (see the dot

within the circle).

On the other hand, when applying the same procedure to the Taylor series expansion TN(p),
we find

− lim
q→1

dTN

dq
= −p ln p +

ξ

N

(
1 − p

ξ

)N

− p

∫ 1−p/ξ

0

tN−1

1 − t
dt. (25)

Equating both by using (21) and applying the trivial identity E[(1 − 1/ξ)n] ≡ (1 − p/ξ)N , by
using the notation of the theorem, we obtain the result

E[ĥ(ξ, n)] = −p ln p + b(ξ, p). (26)

Thus, the claim (11) has been proved. Finally, we consider the residual term, RN+1, of
the Taylor series expansion TN(p). By definition, the identity pq = TN(p) + RN+1(p) is
valid. Using the latter and applying the ordinary integral representation of RN+1, we find the
following relation between the bias and the first derivative of the residual term

lim
q→1

dRN+1

dq
= b(ξ, p) +

ξ

N

(
1 − p

ξ

)N

. (27)

�

Every point on the continuous line in figure 1 is the bias of the corresponding estimator
ĥ(ξ, n). It is unbiased for ξ = p, and there is a turning point for ξ = pN . The estimator is
asymptotically unbiased, i.e. b(ξ, p) → 0 for N → ∞, if ξ � p/2. On the other hand, in
figure 2 we see the mean square error (statistical error) σ 2(ξ, p) = E[(ĥ(ξ, n) − h(p))2]. The
trade-off between bias and the statistical error of the estimator is shown in figure 3. Typically,
one is more interested in the error of the entire sum over the states i in equation (1). If there
are M terms, and if each is roughly of the same order of magnitude, then the total bias and the
total variance are both ∼M , thus the statistical deviation increases only as M1/2. Therefore,
the more terms one has (the larger M), the more one is interested in using small values of
ξ � p/2, if one wants the total statistical and the total systematic deviations to have the same
size. Thus, the interesting estimators lie between both extremes, i.e. the minimum statistical
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Figure 2. Numerical computation of the statistical error σ(ξ, p) for samples of N = 6 observations

and p = 0.07. The minimum of σ(ξ, p) is obtained by the solution of E[ĥ ∂ĥ
∂ξ

] = h ∂b
∂ξ

.
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Minimum σ(ξ,p)                 
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Figure 3. Trade-off between bias and statistical error for samples of N = 6 and p = 0.07. The
reduction of the bias for ξ < pN is related to a strongly increasing statistical error. On the other
hand, the bias corresponding to the minimum statistical error is larger than all the above-mentioned
estimators.

error, and in the case ξ = p with vanishing bias. The following particular cases are especially
interesting to focus on:

ξ = 1. In this case we obtain the trivial estimator for h(p)

ĥ(1, n) = n

N
(ψ(N) − ψ(n)) (28)

and ĥ(1, 0) = 0 for n = 0. By the identity (11) we receive the following expectation value:

E[ĥ(1, n)] = −p ln p − p

∫ 1−p

0

tN−1

1 − t
dt. (29)
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The latter expression has been recently mentioned in [7] (citation [14] in it). In the asymptotic
regime n � 1 it leads to the Miller correction3, i.e. ĥ(1, n) = − n

N
ln n

N
+ 1

2N
+ O(1/N2).

ξ = e− 1
2 . The Grassberger estimator Ĥψ is a special case, since it is not exactly covered by our

theorem. However, it can be very well approximated, if the Taylor expansion is chosen around
the particular value of ξ = e− 1

2 . By numerical analysis we verified that the corresponding
estimator ĥ

(
e− 1

2 , n
)

is less biased than the estimator (7), for any N > 1 and arbitrary p.
In figure 1, we see that there is almost no difference between both estimators. However,
by numerical verification, slight improvements become visible for larger probabilities (e.g.
p > 0.8). In the case of a single observation, i.e. N = 1, there is no difference between the
two, for any p.

ξ = 1
2 . This case is identical to the Grassberger estimator (8) (see [7]). As shown in figure 1,

it is less biased than the Miller estimator and the estimator ĥ
(
e− 1

2 , n
)
. But the statistical error

of ĥ
(

1
2 , n

)
is slightly bigger as we can see in figure 2. In the left half of the unit interval, i.e.

ξ < 1
2 , we obtain further reduction of the bias. But now one has to be attentive since we have

the limes |ĥ(ξ, n)| → ∞ for n → ∞. Although n is always finite in practice, this behaviour
is an indication that the statistical error of all estimators with ξ � 1 could increase very fast.
The dramatic increase of σ(ξ, p) for ξ → 0 is shown in figure 3. Therefore, the particular
choice ξ = 1

2 seems to be very suitable for estimation because it has the smallest |b(ξ, p)|
with ĥ → h(p) for n → ∞ and any p ∈ (0, 1]. On the other hand, the most conservative
case is given by the minimum variance estimator (see figure 3). In this case the value of the
statistical error and the absolute value of the bias are comparable. A compromise between
both extremes might be the estimator for ξ = e− 1

2 ≈ 0.6. This case is less biased than the
minimum variance estimator, and less risky than the Grassberger estimator ĤG.

To sum up, in the above analysis, we see that it is not possible to decide which of the many
estimators ĥ(ξ, n) should be generally preferred. A good choice of the parameter ξ always
depends on the special application under consideration and the individual preference of the
scientist.
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